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Abstract. The possible violation of the CP , T and/or CPT symmetries in the K0–K0 system is studied
from a phenomenological point of view. With this aim, we first introduce parameters which represent
the violation of these symmetries in the mixing parameters and decay amplitudes in a convenient and
well-defined way and, treating these parameters as small, derive formulas which relate them to the exper-
imentally measured quantities. We then perform numerical analyses, with the aid of the Bell–Steinberger
relation, to derive constraints on these symmetry-violating parameters, firstly paying particular attention
to the results reported by the KTeV Collaboration and the NA48 Collaboration, and then with the results
reported by the CPLEAR Collaboration as well taken into account. A case study, in which either CPT
symmetry or T symmetry is assumed, is also carried out. It is demonstrated that the CP and T symme-
tries are violated definitively at the level of 10−4 in 2π decays and presumably at the level of 10−3 in the
K0–K0 mixing, and that the Bell–Steinberger relation helps us to establish that CP and T violations are
definitively present in K0–K0 mixing and to test CPT symmetry to a level of 10−4 ∼ 10−5.

1 Introduction

Although, on the one hand, all experimental observations
up to now are perfectly consistent with CPT symmetry,
and, on the other hand, the standard field theory implies
that this symmetry should hold exactly, continued exper-
imental, phenomenological and theoretical studies of this
and related symmetries are warranted. In this connection,
we like to recall, on the one hand, that CP symmetry is
violated only at such a tiny level as 10−3 [1,2], while CPT
symmetry is tested at best up to a level one order smaller
[3–7] and, on the other hand, that some of the premises of
the CPT theorem, e.g., locality, are being challenged by,
say, the superstring model.

In a series of papers [4–7], we have demonstrated how
one may identify or constrain the possible violation of the
CP , T and CPT symmetries in the K0–K0 system in
a way as phenomenological and comprehensive as possi-
ble. For this purpose, we have first introduced parameters
which represent the violation of these symmetries in the
mixing parameters and the decay amplitudes in a well-
defined way, and we related them to the experimentally
measured quantities. We have then carried out numeri-
cal analyses, with the aid of the Bell–Steinberger relation
[8] and with all the available data on the 2π, 3π, π+π−γ
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and π�ν� decays used as inputs, to derive constraints to
these symmetry-violating parameters. It has been shown
among other things that the new results on the asymp-
totic leptonic asymmetries obtained by the CPLEAR Col-
laboration [9] allow one for the first time to constrain to
some extent the possible CPT violation in the π�ν� decay
modes1.

The present work is a continuation of the previous
works, which is new particularly as regards the following
points:

(1) The new results on Re(ε′/ε), etc., from the Fermilab
KTeV and CERN NA48 experiments [11,12], along with
CPLEAR’s new data [13–16] and the latest version of the
data compiled by the Particle Data Group (PDG) [17],
are used as inputs.
(2) Particular attention is paid to clarify what can be
said without recourse to the Bell–Steinberger relation and
what can be said with the aid of this relation.
(3) A case study with either CPT or T symmetry assumed
is also carried out.
(4) The relevant decay amplitudes are parametrized in a
convenient form, with freedom associated with rephasing

1 We afterwards became aware that the workers of the
CPLEAR Collaboration themselves [10] had also, by an anal-
ysis more or less similar to ours, reached a similar conclusion
independently
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of both the initial and final states, as discussed explicitly
and thoroughly in [4,18,19], taken into account.

This paper is organized as follows. The theoretical
framework used to describe the K0–K0 system [20], in-
cluding the Bell–Steinberger relation, is recapitulated in
Sect. 2, and the experimentally measured quantities re-
lated to CP violation in the decay modes of interest to
us are enumerated in Sect. 3. We then parametrize the
mixing parameters and decay amplitudes in a convenient
and well-defined way and give conditions imposed by the
CP , T and/or CPT symmetries on these parameters in
Sect. 4. In Sect. 5, the experimentally measured quantities
are expressed in terms of the parameters defined, treating
them as being small in first order. In Sect. 6, paying par-
ticular attention to the data provided by the KTeV Col-
laboration and by the NA48 Collaboration, a numerical
analysis is performed, while, in Sect. 7, with most of the
available experimental data, including those reported by
the CPLEAR Collaboration, used as inputs, a more com-
prehensive numerical analysis is performed. Section 8 is
devoted to a case study, in which the case with CPT sym-
metry assumed and the case with T symmetry assumed
are considered separately. The results of the analyses are
summarized and some concluding remarks are given in
Sect. 9.

2K0–K0 mixing
and the Bell–Steinberger relation

Let |K0〉 and |K0〉 be eigenstates of the strong interaction
with strangeness S = +1 and −1, related to each other by
the (CP ), (CPT ) and T operations as [4,18,19,21]

(CP )|K0〉 = eiαK |K0〉, (CPT )|K0〉 = eiβK |K0〉,
(CP )|K0〉 = e−iαK |K0〉, (CPT )|K0〉 = eiβK |K0〉,
T |K0〉 = ei(βK−αK)|K0〉, T |K0〉 = ei(βK+αK)|K0〉.

(2.1)
Note here that, given the first two expressions, where αK

and βK are arbitrary real parameters, the rest follow from
the assumptions (CP )T = T (CP ) = (CPT ), (CP )2 =
(CPT )2 = 1, and from anti-linearity of T and (CPT ).
When the weak interaction Hw is switched on, the K0

and K0 states decay into other states, generically denoted
as |n〉, and get mixed. The time evolution of the arbitrary
state

|Ψ(t)〉 = c1(t)|K1〉 + c2(t)|K2〉,

with

|K1〉 ≡ |K0〉, |K2〉 ≡ |K0〉,

is described by a Schrödinger-like equation [20,22]:

i
d
dt

|Ψ〉 = Λ|Ψ〉,

or

i
d
dt

(
c1(t)
c2(t)

)
= Λ

(
c1(t)
c2(t)

)
. (2.2)

The operator or 2 × 2 matrix Λ may be written as
Λ ≡M − iΓ/2, (2.3)

with M (the mass matrix) and Γ (the decay or width
matrix) given, to second order in Hw, by

Mij ≡ 〈Ki|M |Kj〉
= mKδij + 〈Ki|Hw|Kj〉

+
∑

n

P
〈Ki|Hw|n〉〈n|Hw|Kj〉

mK − En
, (2.4a)

Γij ≡ 〈Ki|Γ |Kj〉
= 2π

∑
n

〈Ki|Hw|n〉〈n|Hw|Kj〉δ(mK − En), (2.4b)

where the operator P projects out the principal value. The
two eigenstates of Λ and their respective eigenvalues may
be written as

|KS〉 =
1√|pS|2 + |qS|2

(
pS|K0〉 + qS|K0〉

)
, (2.5a)

|KL〉 =
1√|pL|2 + |qL|2

(
pL|K0〉 − qL|K0〉

)
, (2.5b)

λS = mS − i
γS
2
, (2.6a)

λL = mL − i
γL
2
. (2.6b)

mS,L = Re(λS,L) and γS,L = −2Im(λS,L) are the mass and
the total decay width of the KS,L state, respectively. By
definition, γS > γL or τS < τL (τS,L ≡ 1/γS,L), and the
suffices S and L stand for “short-lived” and “long-lived”,
respectively. The eigenvalues λS,L and the ratios of the
mixing parameters qS,L/pS,L are related to the elements
of the mass-width matrix Λ by

λS,L = ±E + (Λ11 + Λ22)/2, (2.7)

qS,L/pS,L = Λ21/[E ± (Λ11 − Λ22)/2], (2.8)

where
E ≡ [Λ12Λ21 + (Λ11 − Λ22)2/4]1/2. (2.9)

From the eigenvalue equation of Λ, one may readily derive
the well-known Bell–Steinberger relation [8]:[
γS + γL

2
− i(mS −mL)

]
〈KS|KL〉 = 〈KS|Γ |KL〉, (2.10)

where
〈KS|Γ |KL〉 = 2π

∑
n

〈KS|Hw|n〉〈n|Hw|KL〉δ(mK − En).

(2.11)

3 Decay modes

The K0 and K0 (or KS and KL) states have many decay
modes, among which we are interested in 2π, 3π, π+π−γ
and the semileptonic modes.
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3.1 2π modes

The experimentally measured quantities related to CP
violation are η+− and η00, defined by

η+− ≡ |η+−|eiφ+− ≡ 〈π+π−, outgoing|Hw|KL〉
〈π+π−, outgoing|Hw|KS〉 , (3.1a)

η00 ≡ |η00|eiφ00 ≡ 〈π0π0, outgoing|Hw|KL〉
〈π0π0, outgoing|Hw|KS〉 . (3.1b)

Defining

ω ≡ 〈(2π)2|Hw|KS〉
〈(2π)0|Hw|KS〉 , (3.2)

ηI ≡ |ηI |eiφI ≡ 〈(2π)I |Hw|KL〉
〈(2π)I |Hw|KS〉 , (3.3)

where I = 1 or 2 stands for the isospin of the 2π states,
one gets

η+− =
η0 + η2ω′

1 + ω′ , (3.4a)

η00 =
η0 − 2η2ω′

1 − 2ω′ , (3.4b)

where

ω′ ≡ 1√
2
ωei(δ2−δ0), (3.5)

δI being the S-wave ππ scattering phase shift for the
isospin I state at an energy of the rest mass of K0. ω
is a measure of the deviation from the ∆I = 1/2 rule, and
may be inferred, for example, from

r ≡ γS(π+π−) − 2γS(π0π0)
γS(π+π−) + γS(π0π0)

=
4Re(ω′) − 2|ω′|2

1 + 2|ω′|2 . (3.6)

Here and in the following, γS,L(n) denotes the partial
width for KS,L to decay into the final state |n〉.

3.2 3π and π+π−γ modes

The experimentally measured quantities are

η+−0 =
〈π+π−π0, outgoing|Hw|KS〉
〈π+π−π0, outgoing|Hw|KL〉 , (3.7a)

η000 =
〈π0π0π0, outgoing|Hw|KS〉
〈π0π0π0, outgoing|Hw|KL〉 , (3.7b)

η+−γ =
〈π+π−γ, outgoing|Hw|KL〉
〈π+π−γ, outgoing|Hw|KS〉 . (3.8)

We shall treat the 3π (π+π−γ) states as purely CP -odd
(CP -even).

3.3 Semileptonic modes

The well-measured time-independent asymmetry param-
eter related to CP violation in semileptonic decay modes
is

d�
L =

γL(π−�+ν�) − γL(π+�−ν�)
γL(π−�+ν�) + γL(π+�−ν�)

, (3.9)

where � = e or µ. The CPLEAR Collaboration [9,14–16]
have furthermore for the first time measured two kinds of
time-dependent asymmetry parameters:

d�
1(t) =

|〈�+|Hw|K0(t)〉|2 − |〈�−|Hw|K0(t)〉|2
|〈�+|Hw|K0(t)〉|2 + |〈�−|Hw|K0(t)〉|2 , (3.10a)

d�
2(t) =

|〈�−|Hw|K0(t)〉|2 − |〈�+|Hw|K0(t)〉|2
|〈�−|Hw|K0(t)〉|2 + |〈�+|Hw|K0(t)〉|2 , (3.10b)

where |�+〉 = |π−�+ν�〉 and |�−〉 = |π+�−ν�〉.

4 Parametrization and conditions imposed
by CP , T and CPT symmetries

We shall parametrize the ratios of the mixing parameters
qS/pS and qL/pL as

qS
pS = eiαK 1 − εS

1 + εS ,
qL
pL = eiαK 1 − εL

1 + εL ,
(4.1)

and εS,L as
εS,L = ε± δ. (4.2)

From (2.7), (2.8) and (2.9), treating ε and δ as small pa-
rameters, one may derive [4]

∆m 	 2Re(M12eiαK ), (4.3a)

∆γ 	 2Re(Γ12eiαK ), (4.3b)

ε 	 (Λ12eiαK − Λ21e−iαK )/2∆λ, (4.4a)
δ 	 (Λ11 − Λ22)/2∆λ, (4.4b)

from which it follows that [4,5]

ε‖ ≡ Re[ε exp(−iφSW)] 	 −2Im(M12eiαK )√
(γS − γL)2 + 4(∆m)2

, (4.5a)

ε⊥ ≡ Im[ε exp(−iφSW)] 	 Im(Γ12eiαK )√
(γS − γL)2 + 4(∆m)2

, (4.5b)

δ‖ ≡ Re[δ exp(−iφSW)] 	 (Γ11 − Γ22)
2
√

(γS − γL)2 + 4(∆m)2
,(4.6a)

δ⊥ ≡ Im[δ exp(−iφSW)] 	 (M11 −M22)√
(γS − γL)2 + 4(∆m)2

, (4.6b)

where

∆m ≡ mS −mL, ∆γ ≡ γS − γL,
∆λ ≡ λS − λL, (4.7a)

φSW ≡ tan−1
(−2∆m

∆γ

)
. (4.7b)
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φSW is often called the superweak phase.
Paying particular attention to the 2π and semileptonic

decay modes, we shall parametrize the amplitudes for K0

and K0 to decay into |(2π)I〉 as

〈(2π)I |Hw|K0〉 = FI(1 + εI)eiαK/2, (4.8a)

〈(2π)I |Hw|K0〉 = FI(1 − εI)e−iαK/2, (4.8b)

and the amplitudes for K0 and K0 to decay into |�+〉 and
|�−〉 as

〈�+|Hw|K0〉 = F�(1 + ε�)eiαK/2, (4.9a)

〈�−|Hw|K0〉 = F�(1 − ε�)e−iαK/2, (4.9b)

〈�+|Hw|K0〉 = x�+F�(1 + ε�)e−iαK/2, (4.9c)

〈�−|Hw|K0〉 = x∗
�−F�(1 − ε�)eiαK/2. (4.9d)

x�+ and x�−, which measure violation of the ∆S = ∆Q
rule, will further be parametrized as

x�+ = x(+)
� + x(−)

� , x�− = x(+)
� − x(−)

� . (4.10)

Our amplitude parameters FI , εI , F�, ε�, x
(+)
� and x(−)

� ,
and our mixing parameters ε and δ as well, are all invariant
with respect to rephasing of |K0〉 and |K0〉,

|K0〉 → |K0〉′ = |K0〉e−iξK ,

|K0〉 → |K0〉′ = |K0〉eiξK , (4.11)

in spite of αK itself not being invariant with respect to
this rephasing [4,18]. FI , εI , F� and ε� are, however, not
invariant with respect to rephasing of the final states [7,
19],

|(2π)I〉 → |(2π)I〉′ = |(2π)I〉e−iξI , (4.12a)

|�+〉 → |�+〉′ = |�+〉e−iξ�+ ,

|�−〉 → |�−〉′ = |�−〉e−iξ�− , (4.12b)

nor are the relative CP and CPT phases α�, βI and β�

defined in such a way that

CP |�+〉 = eiα� |�−〉, (4.13a)

CPT |(2π)I〉 = eiβI |(2π)I〉,
CPT |�+〉 = eiβ� |�−〉. (4.13b)

One may convince oneself [4,18,19] that the freedom as-
sociated with the choice of ξI , ξ�+ + ξ�− and ξ�+ − ξ�−
allows one, without loss of generality, to take2

Im(FI) = 0, Im(F�) = 0, Im(ε�) = 0, (4.14)
2 Note that, although the freedom associated with ξK and

ξ�+ − ξ�− allows one to take αK = 0 and α� = 0 (instead of
Im(ε�) = 0) respectively, we prefer not to do so. Note also that
our parametrization (4.9a,b) is similar to, but different from
the one more widely adopted [23,24],

〈	+|Hw|K0〉 = F�(1 − y�), 〈	−|Hw|K0〉 = F ∗
� (1 + y∗

� ),

and that, nevertheless, our Re(ε�) is exactly equivalent to
−Re(y�) introduced through these equations and also to
−Re(y) defined in [14–16]

respectively, and that the CP , T and CPT symmetries
impose such conditions as
CP symmetry : ε = 0, δ = 0, εI = 0, Re(ε�) = 0,

Im(x(+)
� ) = 0, Re(x(−)

� ) = 0
T symmetry : ε = 0, Im(εI) = 0, Im(x(+)

� ) = 0,
Im(x(−)

� ) = 0;
CPT symmetry : δ = 0, Re(εI) = 0, Re(ε�) = 0,

Re(x(−)
� ) = 0, Im(x(−)

� ) = 0.
(4.15)

Among these parameters, ε and δ will be referred to as
indirect parameters and the rest as direct parameters3.

5 Formulas relevant for the numerical analysis

We shall adopt a phase convention which gives (4.14). The
observed or expected smallness of the violation of the CP ,
T and CPT symmetries and of the ∆I = 1/2 and ∆Q =
∆S rules allows us to treat all our parameters, ε, δ, εI ,
ε�, x

(+)
� , x(−)

� as well as ω′ as small4, and, from (3.2),
(3.3), (3.4a,b), (3.6), (3.9) and (3.10a,b), one finds, to the
leading order in these small parameters,

ω 	 Re(F2)/Re(F0), (5.1)

ηI 	 ε− δ + εI , (5.2)

η+− 	 η0 + ε′, (5.3a)
η00 	 η0 − 2ε′, (5.3b)

r 	 4Re(ω′), (5.4)

d�
L 	 2Re(ε− δ) + 2Re(ε� − x(−)

� ), (5.5)

d�
1(t � τS) 	 4Re(ε) + 2Re(ε� − x(−)

� ), (5.6a)

d�
2(t � τS) 	 4Re(δ) − 2Re(ε� − x(−)

� ), (5.6b)

where
ε′ ≡ (η2 − η0)ω′. (5.7)

Note that d�
L, d�

1(t � τS) and d�
2(t � τS) are not indepen-

dent:
d�
L 	 [d�

1(t � τS) − d�
2(t � τS)]/2. (5.8)

From (5.3a,b), it follows that
η0 	 (2/3)η+−(1 + (1/2)|η00/η+−|ei∆φ), (5.9)

and, treating |ε′/η0| as a small quantity, which is justifi-
able empirically (see below), one further obtains

η00/η+− 	 1 − 3ε′/η0, (5.10)

3 As emphasized in [18], the classification of the symmetry-
violating parameters into “direct” and “indirect” ones makes
sense only when they are defined in such a way that they are
invariant under rephasing of |K0〉 and |K0〉, see (4.11)

4 As a matter of fact, we have already assumed that the CP ,
T and CPT violations are small in deriving (4.3a) ∼ (4.6b)
and in parametrizing the relevant amplitudes as in (4.8a) ∼
(4.9d)
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or

Re(ε′/η0) 	 (1/6)(1 − |η00/η+−|2), (5.11a)
Im(ε′/η0) 	 −(1/3)∆φ, (5.11b)

where
∆φ ≡ φ00 − φ+−. (5.12)

On the other hand, from (3.5), (5.1), (5.2) and (5.7), one
may derive
ε′/η0 = −iRe(ω′)(ε2−ε0)e−i∆φ′

/[|η0| cos(δ2−δ0)], (5.13)

where
∆φ′ ≡ φ0 − δ2 + δ0 − π/2. (5.14)

Furthermore, noting that

〈KS|KL〉 	 2[Re(ε) − iIm(δ)],

one may use the Bell–Steinberger relation, (2.10), to ex-
press Re(ε) and Im(δ) in terms of measured quantities. By
taking 2π, 3π, π+π−γ and π�ν� intermediate states into
account in (2.11) and making use of the fact γS � γL, we
derive

Re(ε) 	 1√
γ2
S + 4(∆m)2

×
[
γS(π+π−)|η+−| cos(φ+− − φSW)

+ γS(π0π0)|η00| cos(φ00 − φSW)
+ γS(π+π−γ)|η+−γ | cos(φ+−γ − φSW)

+ γL(π+π−π0){Re(η+−0) cosφSW

− Im(η+−0) sinφSW}
+ γL(π0π0π0){Re(η000) cosφSW

− Im(η000) sinφSW}
+ 2

∑
�

γL(π�ν�){Re(ε�) cosφSW

− Im(x(+)
� ) sinφSW}

]
, (5.15)

Im(δ) 	 1√
γ2
S + 4(∆m)2

× [−γS(π+π−)|η+−| sin(φ+− − φSW)
− γS(π0π0)|η00| sin(φ00 − φSW)
− γS(π+π−γ)|η+−γ | sin(φ+−γ − φSW)

+ γL(π+π−π0){Re(η+−0) sinφSW

+ Im(η+−0) cosφSW}
+ γL(π0π0π0){Re(η000) sinφSW

+ Im(η000) cosφSW}
+ 2

∑
�

γL(π�ν�){Re(ε�) sinφSW

+ Im(x(+)
� ) cosφSW}]. (5.16)

If, however, one retains the contribution of the 2π inter-
mediate states alone, which is justfiable empirically, the
Bell–Steinberger relation gives simply

Table 1. Input data (1)

Quantity Value Unit Ref.

τS 0.896 ± 0.0007 10−10 s [11]
τL 5.17 ± 0.04 10−8 s [17]
−∆ 0.5268 ± 0.0015 1010s−1 [11]

2π γS(π+π−)/γS 68.61 ± 0.28 % [17]
γS(π0π0)/γS 31.39 ± 0.28 % [17]

δ2 − δ0 (−42 ± 20) ◦ [27]a

|η+−| 2.285 ± 0.019 10−3 [17]
φ+− 43.5 ± 0.6 ◦ [17]

|η00/η+−|2 0.9832 ± 0.0025 [11]
0.9889 ± 0.0044 [12]

∆φ 0.09 ± 0.46 ◦ [11]
π	ν d�

L 3.27 ± 0.12 10−3 [17]
a Error extended arbitrarily by a factor of five

Re(ε) − iIm(δ) 	 |η0|ei∆φ′′
cosφSW, (5.17)

where
∆φ′′ ≡ φ0 − φSW. (5.18)

It is to be noted that equations exactly the same as (5.17)
can be derived from (4.5b) and (4.6a).

6 Numerical analysis (1).
Constraints from the KTeV and NA48 data

The data used as inputs in the numerical analysis given
below are tabulated in Table 1. As the value of |η00/η+−|
or Re(ε′/η0), we adopt those [11,12] reported by the KTeV
Collaboration and the NA48 Collaboration5, and as the
values of ∆m, τS and ∆φ, we use those reported by the
KTeV Collaboration [11]. As for δ2−δ0, we use (−42±20)◦,
i.e., the Chell–Olsson value [27] with the error arbitrarily
extended by a factor of five to take account of its possible
uncertainty [28]. All the other data are from the Particle
Data Group (PDG) [17].

Our analysis consists of two parts:
The first half. We use (4.7b) to find φSW from ∆m and
γS, use (3.6) and (5.4) to find Re(ω′) from γS(π+π−)/γS
and γS(π0π0)/γS, and further use (5.11a,b) and (5.9) to
find Re(ε′/η0), Im(ε′/η0), |η0| and φ0 from |η00/η+−|, ∆φ,
|η+−| and φ+−. These results are shown as the intermedi-
ate outputs in Table 2.
The second half. The values of η0, ε′/η0, φSW and Re(ω′)
obtained, supplemented with the value of δ2 −δ0, are used

5 The experimental result in favor of ε′/ε �= 0 was reported
earlier by the NA31 Collaboration [25]. However, since another
result in conflict with this result was reported almost the same
time by the E731 Collaboration [26], we shall ignore both of
these results. Note that ε used in [11,12] corresponds to our η0.
Since only Re(ε′/ε), but not |η00/η+−|2, is reported explicitly
in [11], we take a weighted average of the two values of Re(ε′/ε)
reported in [11,12] and list this in Table 2 below
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Table 2. Intermediate outputs

Quantity Value Unit

φSW 43.40 ± 0.09 ◦

Re(ω′) 1.458 ± 0.157 ×10−2

Re(ε′/η0) 2.59 ± 0.36 ×10−3

Im(ε′/η0) −0.524 ± 2.676 ×10−3

|η0| 2.279 ± 0.019 ×10−3

φ0 43.53 ± 0.94 ◦

Table 3. Constraints (in units of 10−3) to CP , T and/or CPT -
violating prameters (1)

Quantity Result

Re(ε2 − ε0) 0.084 ± 0.328
Im(ε2 − ε0) 0.295 ± 0.113
Re(ε − δ + ε� − x

(−)
� ) 1.635 ± 0.060

Re(ε) 1.656 ± 0.014
Im(ε + ε0) 1.566 ± 0.014
Im(δ) −0.004 ± 0.027
Re(δ − ε0) 0.004 ± 0.026
Re(δ − ε� + x

(−)
� ) 0.021 ± 0.062

as inputs to find Re(ε2 − ε0) and Im(ε2 − ε0) with the
help of (5.13) and (5.14), and to find Re(ε) and Im(δ)
with the help of (5.17). The values of Re(ε) and Im(δ) are
in turn used to constrain Re(δ−ε0) and Im(ε+ε0) through
(5.2) and constrain Re(δ − ε� + x(−)

� ) through (5.5). The
numerical results obtained are shown in Table 3. The value
of Re(ε− δ+ ε� − x(−)

� ), which is nothing but the value of
d�
L/2, is also shown.

7 Numerical analysis (2).
Constraints from the CPLEAR results

Immediately after the CPLEAR Collaboration reported
[9] their preliminary result on the asymptotic leptonic
asymmetries, d�

1,2(t � τS), we showed [6] that this result,
combined with the other relevant data available, could be
used with the help of the Bell–Steinberger relation to con-
strain many of the CP , T and/or CPT -violating param-
eters introduced. The analysis went as follows. Assuming
Re(x(−)

� ) = 06, (5.6a) and (5.15) were used to find the val-
ues of Re(ε) and Re(ε�). The value of Re(ε�) was then used
to constrain Re(δ) and Im(δ) through (5.6b) and (5.16),
respectively, and all these values were combined with the
value of η0 to determine or constrain Im(ε+ε0) and Re(ε0).

6 In most of the experimental analyses prior to those [15,
16] by the CPLEAR Collaboration, either CPT symmetry is
taken as granted or no distinction is made between x�+ and
x�−, which implies that x

(−)
� is implicitly presupposed to be

zero. Accordingly, we identified x used in [17] with our x
(+)
�

In order to appreciate the results obtained under the
2π dominance and to separately constrain, as far as possi-
ble, the parameters not yet separately constrained in the
previous section, we now proceed to perform an analysis
similar to the one explained above [6], with the new results
[13–16] reported by the CPLEAR Collaboration taken into
account. In [14–16], the CPLEAR Collaboration has de-
fined two kinds of experimental asymmetries Aexp

T (t) and
Aexp

δ (t) which are related to d�
1,2(t) and behave as

Aexp
T (t � τS) 	 4Re(ε+ ε� − x(−)

� ), (7.1a)
Aexp

δ (t � τS) 	 8Re(δ), (7.1b)

and, by performing
(1) a fit to Aexp

T under the assumption of Re(ε�) = 0 and
x

(−)
� = 0 [14],

(2) a fit to Aexp
δ [15], and

(3) fit to both Aexp
T and Aexp

δ using as constraints the Bell–
Steinberger relation and the PDG value of d�

L [16], suc-
ceeded in determining Re(ε), Re(δ), Im(δ), Re(ε�),
Im(x(+)

� ) and/or Re(x(−)
� ) simultaneously.

Among the numerical outputs obtained by the
CPLEAR Collaboration, there are two pieces, Re(ε) =
(1.55±0.35)×10−3 from [14] and Re(δ) 	 (0.30±0.33)×
10−3 from [15], which are in fact determined predomi-
nantly by the asymptotic values of Aexp

T (t) and Aexp
δ (t)7.

One may therefore interpret these outputs as giving the
values of Aexp

T (t � τS)/4 and Aexp
δ (t � τS)/8, respec-

tively. Replacing (5.6a) with (7.1a), using (5.5) instead of
(5.6b), and with the data listed in Table 4 as well as in Ta-
ble 1 used as inputs, we perform an analysis similar to the
previous one [6], and obtain the result shown in Table 5.

A couple of remarks are in order.

(1) The assumption of x(−)
� = 0 has little influence numer-

ically on the determination of Re(ε), Im(δ) and Im(ε+ε0)
and the error of these parameters is dominated by that of
η000.
(2) Our constraint to Re(ε�) is better to be interpreted as a
constraint to Re(ε�−x(−)

� ), the error of which is controlled
dominantly by that of Aexp

T .
(3) The error of Re(δ) and Re(ε0) is also controlled dom-
inantly by that of Aexp

T .
(4) The numerical results we have obtained are fairly in
agreement with those obtained by the CPLEAR Collabo-
ration in [16], except that we have not been able to sepa-
rate Re(ε�) from Re(x(−)

� ).

8 Case study: T or CPT violation?

In the analyses given in the previous sections, we have
taken account of the possibility that any of CP , T and
CPT symmetries might be violated in the K0–K0 sys-
tem. Our numerical results shown in Table 3 and Table 5

7 In contrast, the values of Im(x(+)
� ), Re(x(−)

� ) and Im(δ)
obtained are sensitive to the behavior of Aexp

T (t) and of Aexp
δ (t)

at t comparable to τS
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Table 4. Input data (2)

Quantity Value Unit Ref.

3π γL(π+π−π0)/γL 12.56 ± 0.20 % [17]
γL(π0π0π0)/γL 21.12 ± 0.27 % [17]

Re(η+−0) −0.002 ± 0.008 [13,16]
Im(η+−0) −0.002 ± 0.009 [13,16]
Re(η000) 0.08 ± 0.11 [13,16]
Im(η000) 0.07 ± 0.16 [13,16]

π+π−γ γS(π+π−γ)/γS 0.178 ± 0.005 % [17]
|η+−γ | 2.35 ± 0.07 10−3 [17]
φ+−γ 44 ± 4 ◦ [17]

π	ν
∑

� γL(π	ν)/γL 65.96 ± 0.30 % [17]
Im(x(+)

� ) −0.003 ± 0.026 [17]
Aexp

T (t 
 τS) 6.2 ± 1.4 10−3 [14]

Table 5. Constraints (in units of 10−3) to CP , T and/or CPT -
violating prameters (2)

Quantity Result

Re(ε) 1.666 ± 0.048
Im(ε + ε0) 1.590 ± 0.059

Im(δ) 0.020 ± 0.051
Re(δ) −0.085 ± 0.361
Re(ε0) −0.099 ± 0.365
Re(ε�) −0.116 ± 0.353

indicate that the CPT symmetry appears to be consistent
with the experiments while T symmetry does not appear
to be consistent with experiments8. To confirm these ob-
servations, we now go on to perform a case study.

8.1 Case A. CPT is a good symmetry

Putting

δ = Re(εI) = Re(ε�) = x(−)
� = 0,

(5.2), (5.5), (5.6a,b), (5.8) and (5.13) reduce, respectively,
to

ηI 	 ε+ iIm(εI), (8.1a)

d�
L 	 2Re(ε), (8.1b)

d�
1(t � τS) 	 4Re(ε), (8.1c)

d�
2(t � τS) 	 0, (8.1d)

8 Our results should also be compared with earlier results
obtained by other authors from analyses more or less similar
to ours. Although our analysis is much more comprehensive
and our results are much more precise than these earlier ones,
a conclusion similar to ours, i.e., the observed CP violation
is predominantly due to the CPT -conserving parameters and
time reversal invariance is violated, has already been reached,
for example, by Schubert et al. [29]

d�
L 	 d�

1(t � τS)/2, (8.1e)

ε′/η0 	 Re(ω′)Im(ε2 − ε0)e−i∆φ′

/[|η0| cos(δ2 − δ0)]. (8.1f)

Equation (8.1f) gives9

Im(ε′/η0) = −Re(ε′/η0) tan∆φ′, (8.2)

and the simplified version of the Bell–Steinberger relation,
(5.17), gives10

φ0 	 φSW, (8.3a)
Re(ε) 	 |η0| cosφSW. (8.3b)

From the input data (Table 1 and Table 4) and the inter-
mediate output data (Table 2), we observe the following:
(1) The experimental values of d�

L, d�
1(t � τS) and d�

2(t �
τS) are compatible with (8.1d,e).
(2) The values of Re(ε′/η0), Im(ε′/η0), φ0 and δ2 − δ0 are,
as illustrated in Fig. 1, compatible with (8.2).
(3) The values of φ0 and φSW are compatible with (8.3a).
(4) The values of Re(ε) determined from (8.1a) and (8.1b),
(1.652 ± 0.029) × 10−3 and (1.635 ± 0.060) × 10−3, are
compatible with each other and, as a weighted average,
give

Re(ε) 	 (1.649 ± 0.026) × 10−3, (8.4)

which is compatible with (1.656±0.014)×10−3 determined
with the aid of the Bell–Steinberger relation (8.3b)11.
(5) Equations (8.1a) and (8.1f) give

Im(ε+ ε0) 	 (1.570 ± 0.030) × 10−3, (8.5a)
Im(ε2 − ε0) 	 (3.02 ± 1.09) × 10−4. (8.5b)

8.2 Case B. T is a good symmetry12

Putting

ε = Im(εI) = Im(x(+)
� ) = Im(x(−)

� ) = 0,

9 It is to be noted that, if and only if the CPT symme-
try is supplemented with the very accidental empirical fact
φSW � δ2 − δ0 + π/2, one would have Im(ε′/η0) � 0; it is
therefore, as emphasized in [7], not adequate to assume this in
a phenomenological analysis
10 Equation (8.3a) states that the deviation of φ0 from φSW

measures CPT violation. This is equivalent to the more fa-
miliar statement: deviation of (2/3)φ+− + (1/3)φ00 from φSW

measures CPT violation, because (5.9), supplemented with the
experimental observation |η00/η+−| � 1 and ∆φ � 0, gives
φ0 � (2/3)φ+− + (1/3)φ00
11 Equation (5.15), with Re(ε�) = 0, yields (1.667 ± 0.048) ×
10−3

12 The possibility of CP/CPT violation in the framework
of T symmetry was examined before by one of the present
authors (S.Y.T) [30] when the experimental results which upset
the CPT symmetry (e.g., |η+−| is nearely twice as large as
|η+−| !) had been reported. The same possibility was recently
reconsidered by Bigi and Sanda [24]
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Fig. 1. The allowed region on the complex ε′/η0 plane when
CPT or T symmetry is assumed. (The experimental value of
ε′/η0 is also shown)

(5.2), (5.5), (5.6a) and (5.13) reduce, respectively, to

ηI 	 −δ + Re(εI), (8.6a)

d�
L 	 −2Re(δ) + 2Re(ε� − x(−)

� ), (8.6b)

d�
1(t � τS) 	 2Re(ε� − x(−)

� ), (8.6c)

ε′/η0 	 Re(ω′)Re(ε2 − ε0)e−i(∆φ′+π/2)

/[|η0| cos(δ2 − δ0)]. (8.6d)

Equation (8.6d) gives

Im(ε′/η0) = Re(ε′/η0) cot∆φ′, (8.7)

and the simplified version of the Bell–Steinberger relation,
(5.17), gives

φ0 	 φSW ± π/2, (8.8a)
Im(δ) 	 ±|η0| cosφSW. (8.8b)

From the input data (Table 1 and Table 4) and the inter-
mediate output data (Table 2), we observe the following:
(1) As illustrated also in Fig.1, the values of Re(ε′/η0),
Im(ε′/η0), φ0 and δ2 − δ0 are not compatible with (8.7).
(2) The values of φ0 and φSW are not compatible with
(8.8a).
(3) Equation (8.6a) gives

Im(δ) 	 (−1.570 ± 0.030) × 10−3, (8.9)

to be compared with ±(1.656 ± 0.014) × 10−3 determined
with the aid of (8.8b).

(4) Equation (8.6d) gives

Re(ε2 − ε0) 	 (0.61 ± 3.12) × 10−4, (8.10)

while (8.6a,b,c) give in turn

Re(ε� − x(−)
� ) 	 (3.14 ± 1.40) × 10−3, (8.11a)

Re(δ) 	 (1.51 ± 1.40) × 10−3, (8.11b)
Re(ε0) 	 (3.16 ± 1.40) × 10−3. (8.11c)

The observation (1) establishes the existence of direct
CP/T violation in the K0–K0 system [11,12,31]13. The
observation (2), though subject to the validity of the Bell–
Steinberger relation, also implies that CP/T symmetry is
violated in the K0–K0 system.

9 Summary and concluding remarks

In order to identify or search for the violation of the CP , T
and CPT symmetries in the K0–K0 system, parametriz-
ing the mixing parameters and the relevant decay am-
plitudes in a convenient and well-defined way, we have,
with the aid of the Bell–Steinberger relation and with all
the relevant experimental data used as inputs, performed
numerical analyses to derive constraints to the symmetry-
violating parameters in several ways. The analysis given
in Sect. 6 is based on the data on 2π decays as well as the
well-measured leptonic asymmetry d�

L, while, in the anal-
ysis given in Sect. 7, the data on 3π and π+π−γ decays
and on the newly measured leptonic asymmetries are also
taken into account.

The numerical outputs of our analyses are shown in
Table 3 and Table 5, and the main results may be summa-
rized as follows:
(1) The 2π data directly give Im(ε2 −ε0) = (2.95±1.13)×
10−4 in general, or (3.02 ± 1.09) × 10−4 if the CPT sym-
metry is assumed, where a possible large uncertainty as-
sociated with δ2 − δ0 has been fully taken into account.
This result indicates that the CP and T symmetries are
definitively violated in the decays of K0 and K0 into the
2π states.
(2) The well-measured leptonic asymmetry d�

L directly
gives Re(ε − δ + ε� − x

(−)
� ) = (1.635 ± 0.060) × 10−3,

which implies presumably that the CP and T violations
are present also in the K0–K0 mixing (i.e., Re(ε) �= 0)14
(3) The Bell–Steinberger relation, with the 2π intermedi-
ate states alone taken into account, gives Re(ε) = (1.656±
0.014) × 10−3 and Im(ε + ε0) = (1.566 ± 0.014) × 10−3.
If the CPT symmetry is assumed, Re(ε) is determined
without recourse to the Bell–Steinberger relation to be
(1.649±0.026)×10−3. All this indicates that the CP and
T violations are present in the mixing parameters.
13 We like to mention that (8.7) would become consistent with
the experiments if, say, φ00 would prove to be away from φ+−
roughly by � 6◦ or more
14 Of course, d�

L �= 0 does not exclude CPT violation (i.e.,
Re(δ − ε� + x

(−)
� ) �= 0)
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(4) The parameters, the nonvanishing of which signals the
CP and CPT violations, have also been constrained. The
2π data alone directly give Re(ε2 −ε0) = (0.084±0.328)×
10−3 and, with the aid of the Bell–Steinberger relation,
give Im(δ) = (−0.004±0.027)×10−3, Re(δ−ε0) = (0.004±
0.026)×10−3 and Re(δ−ε�+x(−)

� ) = (0.021±0.062)×10−3.
These results imply that there is no evidence for CPT
violation on the one hand and that CPT symmetry is
tested at best to the level of a few ×10−5 on the other
hand.
(5) The Bell–Steinberger relation, even with the interme-
diate states other than the 2π states taken into account,
still allows one to determine Re(ε) and Im(ε+ ε0) and to
constrain Im(δ) to a level better than 10−4. On the other
hand, the constraint to Re(δ), Re(ε0) and Re(ε� −x(−)

� ) is
a little loose and is at the level of a few ×10−4.

The recent data reported by the KTeV Collabotra-
tion [11] and the NA48 Collaboration [12] are extremely
remarkable in that they play a vital role in establishing
Im(ε2 − ε0) �= 0, and that this is at present the only piece
which indicates “direct violation” (in the sense defined in
Sect. 4) of the CP and T symmetries and thereby unam-
biguously rules out superweak (or superweak-like) models
of CP violation.

The analyses done by the CPLEAR Collaboration [14–
16] are also very remarkable, in particular in that they
have succeeded in deriving a constraint to Re(x(−)

� ), and
in that they have determined Re(ε+ ε� −x(−)

� ) and Re(δ)
directly (i.e., without invoking the Bell–Steinberger rela-
tion) with an accuracy down to the level of a few ×10−4.15

It is expected that the new experiments at the facilities
such as DAΦNE, Frascati, will be providing data with such
precision and quality that a more precise and thorough
test of the CP , T and CPT symmetries, and a test of the
Bell–Steinberger relation as well, become possible [23,33,
34].
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